BASIS FOR REDUCING THE LATERAL SHIELDING IN THE B & C TARGET AREAS

A. Wattenburg

September 27, 1967

(This is an effort to provide the source of data and assumptions being used in the discussion of A. Maschke, L. Read, and others which lead to a reduction in the lateral shielding of the external target areas)

The main basis for a change is experience at other accelerators and preliminary report of shielding experiments at CERN. (Study UCID-10199, 4-28-67) reported by R. D. Fortune, W. S. Gilbert and R. H. Thomas.

Their preliminary conclusion is Table III on page 15.

For a 200 BeV accelerator with 13% targeting of a 5×10^{13} proton/sec they give that one needs 1600-1700 gms/cm² where as the earlier figure was 2350 gms/cm². The above shielding leads to 110 m rem/hr outside the shield. To correct this figure to about 5 m rem/hr with a 1×10^{13} protons/sec hitting a thick target followed by magnets (or effectively a stop) one needs an additional attentuation factor of 30.

The same report of Fortune et al. gives an attenuation length of 98 g/cm^2 in a plane arrangement and 107 g/cm^2 in a cylindrical arrangement. The old rule of thumb is 250 g/cm^2 (also report of Ranft ECFA vol. II, Fig. 5, pg. 323)

gives 108 g/cm^2 . (Recent measurements of 3.5 BeV/c Pions at the ZGS gives $\lambda = 135 \text{ g/cm}^2$. In aluminum, therefore, the value of 108 g/cm^2 for neutrons is understandable in terms of fundamental cross-sections). Therefore 250 g/cm^2 for a factor of 10 remains the value to use in making corrections for heavy concrete and steel.

An additional factor of 30 requires 360 g/cm 2 . Therefore the 1600-1700 g/cm 2 of the Fortune et al. becomes 1960-2060 g/cm 2 .

Using a density of 3.5 for heavy concrete, one gets that the lateral shielding should be

$$\frac{1960}{3.5} \times \frac{1}{30} = 19$$
 feet

$$\frac{2060}{3.5} \times \frac{1}{30} = 20 \text{ feet.}$$

This figure is for 5 m rem/hr and 1×10^{13} proton/sec.

The previous figure was about 28 feet of heavy concrete or 14 feet of iron. These were based (in my estimates) on a report by Ranft (ECFA vol II); table on p. 115, where the column 10¹⁴ really corresponded to 10¹³ (see page 318) and 1 m rem/hr. The table gave 415 cm of iron which is 14 feet.